
Connor McCoy
CIS4360

11/05/2014

1

Project Proposal

What?

I’m creating a game (working title “BotNet”) that simulates commanding a botnet to hack into a

server. The objective is to hack into a server by inputting the correct username/password, which

is most naively done via brute force, expedited by gathering as many slaves as possible. Each

player in a session competes against every other player to be the first to do this.

To simulate this experience, each player will have up to 10 open connections (called “slots”).

They are guaranteed to retain at least 1 slot, but each of the other 9 can be captured by other

players. To start, I plan to cap the number of slots a hostile player can capture from another

individual player at 1; however, a player can capture up to this cap from every other player in the

session.

Furthermore, these slots will be simulated by each player’s device sending a message to the

server each cycle (of perhaps 1 second). The message contains their own device’s contribution

towards “hacking” the server, their commands to their slaves, their offensive actions toward

other players, their defensive actions, and finally the contribution of their slaved slots towards

other player’s benefit. The server will then process this data and send updates to each player

accordingly.

If possible, the devices will send appropriate messages to each other directly to better simulate a

botnet; however, this is a stretch goal as the user wouldn’t be able to tell the difference.

Offensive measures a player can take include “hacking” other players to slave them (they send a

Trojan worm). Additionally, players can attempt to access a simulated directory on a slave which

informs them which passwords that player has already tried (and thus accelerate one’s own

efforts through elimination of possibilities).

Defensive measures include HIS security (simulated as a memorization/pattern analysis

minigame using characters; core elements such as identifying self, choosing window sizes, and a

malware “hit rate”/symbols will be retained).

Utility measures include performing traceroutes, to attempt to identify who’s currently attacking

you with their slaves or who’s already stolen that juicy slot you want.

Additional stretch goals include incorporating more intelligent dictionary and rainbow table

attacks into the game.

Connor McCoy
CIS4360

11/05/2014

2

How?

At first I will attempt to develop the game using Xamarin, which is a platform that allows me to

deploy on iOS, Android, Windows and Mac with a single, shared C# codebase. Failing that, I’ll

probably create the game in Java (the UI would be a series of swing/FX panels, and it would be

distributed in a JAR file). Otherwise, I’ll implement the game as a native Android app.

In all cases, I’ll probably create the server in Java and run it on my desktop.

The slots mentioned previously will become sockets (this is basically the same in Java and C#).

I have, if possible, less than no artistic talent so I will deliberately go for an old, blocky, “green”

art style (think the computer terminal UIs from Aliens). Hopefully, that should suit the project

and be easy to implement.

So far, I’ve identified 4 minigames:

1. “Slaving”—the player sends a Trojan worm to an opponent, perhaps disguised as a server

response.

Every 30 seconds the server should send feedback to players concerning the progress of

their hack. Trojan worms will be buried in this feedback message. The player won’t have

time to review it all manually (it would take ~1 minute); they can either accept the

message, quarantine parts of it, or reject it. Rejecting it forfeits any progress made that

cycle in their hack of the server. (This is a wonky gameplay mechanic, working on a way

to make it more accurate).

2. “Rooting”—the player escalates their access level high enough to view and download the

set of passwords their opponent has already attempted.

Essentially, a themed text-based adventure game.

3. “HIS”—the player attempts to identify friendly (self) symbols and flag hostile symbols.

A character memorization/analysis minigame.

4. “Traceroutes”—the player attempts to discover who is controlling a group of slaves.

Still considering how to implement this at present; big decision is to do it visually (graph)

or entirely text based.

Connor McCoy
CIS4360

11/05/2014

3

Why?

I’d like the opportunity to compile what I’ve learned in this class in game which, crucially,

shows how offensive and defensive security measures interact at a high level and intuitively

depicts the computer arms race.

Connor McCoy
CIS4360

11/05/2014

4

Resources

http://xamarin.com/

(Xamarin main website)

VisualStudio

(with Xamarin)

NetBeans

(for at least the Java server)

AndroidStudio, GennyMotion

(should I develop for Android natively)

http://xamarin.com/

